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Abstract. Methods for describing structured data are a key aid in ap-
plication development. The MPI standard defines a system for creating
“MPI types” at run time and using these types when passing messages,
performing RMA operations, and accessing data in files. Similar capa-
bilities are available in other middleware. Unfortunately many imple-
mentations perform poorly when processing these structured data types.
This situation leads application developers to avoid these components
entirely, instead performing any necessary data processing by hand.
In this paper we describe an internal representation of types and a sys-
tem for processing this representation that helps maintain the highest
possible performance during processing. The performance of this sys-
tem, used in the MPICH2 implementation, is compared to well-written
manual processing routines and other available MPI implementations.
We show that performance for most tested types is comparable to man-
ual processing. We identify additional opportunities for optimization and
other software where this implementation can be leveraged.

1 Introduction

Many middleware packages now provide mechanisms for building datatypes, de-
scriptions of structured data, and using these types in other operations, such as
message passing, remote memory access, and I/O. These mechanisms typically
allow regularity of structured data to be described, leading to concise descrip-
tions of sometimes complicated layouts.

The problem with many implementations of these systems is that they per-
form poorly [9]. Hence, application programmers often avoid the systems alto-
gether and instead perform this processing manually in the application code. A
common instance of this is manually packing structured data (placing noncon-
tiguous data into a contiguous region for efficiently sending in a message) and
then manually copying the data back into structured form on the other side.

Obviously, no implementors providing mechanisms for structured data de-
scription and manipulation intend these systems to be unusably slow. Further,
the MPI datatype specification does not preclude high-performance implementa-
tions. Several groups have investigated possibilities for improving MPI datatype
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processing performance [10, 5] with some success, but the techniques described
in these works have not yet made it into widely-used MPI implementations.

This work describes the implementation of a generic datatype processing
system and its use in the context of a portable, high-performance MPI imple-
mentation, MPICH2. The goal of this work is to provide a high-performance
implementation of datatype processing that will allow application programmers
to leverage the power of datatypes without sacrificing performance. While we
will show the use of this system in the context of MPI datatypes, the imple-
mentation is built in such a way that it can be leveraged in other environments
as well by providing a simple but complete representation for structured types,
a mechanism for efficiently performing arbitrary operations on data types (not
just packing and unpacking), and support for partial processing of types.

2 Design

Previous work presented a taxonomy of MPI types and a methodology for rep-
resenting these in a concise way [5]. It further discussed the use of an explicit
stack-based approach for processing that avoids recursive calls seen in simple
implementations. At the time, however, only preliminary work was done in this
direction, and no implementation was made available. This effort builds on that
preliminary work, implementing many of the ideas, extending and generalizing
the approach for use in additional roles, and providing this implementation as
part of a portable MPI implementation. There are three characteristics of this
implementation that we will consider in more detail:

– Simplified type representation (over MPI types)
– Support for partial processing of types
– Separation of type parsing from action to perform on data

2.1 Representing Types: Dataloops

We describe types by combining a concise set of descriptors that we call data-
loops. Dataloops can be of five types: contig, vector, blockindexed, indexed, and
struct [5]. These five types allow us to capture the maximum amount of reg-
ularity possible, keeping our representation concise. At the same time, these
are sufficient to describe the entire range of MPI types. Simplifying the set of
descriptors aids greatly in implementing support for fast datatype processing
because it reduces the number of cases that our processing code must handle.
Further, we maintain the type’s extent in this representation (a general concept)
while eliminating any future need for the MPI-specific LB and UB values. This
simplification has the added benefit of allowing us to process resized types with
no additional overhead in our representation.

For MPI we create the dataloop representation of the type within the MPI
type creation calls (e.g., MPI Type vector), building on the dataloop represen-
tation of the input type. We also take this opportunity to perform optimizations
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vector ct = 24; blk = 1; str = 8; el_sz = 327680; el_ext = 62495048

vector ct = 80; blk = 1; str = 786432; el_sz = 4096; el_ext = 366920

vector ct = 8; blk = 1; str = 49152; el_sz = 512; el_ext = 22856

vector ct = 8; blk = 1; str = 3072; el_sz = 64; el_ext = 1352

vector ct = 8; blk = 1; str = 192; el_sz = 8; el_ext = 8

Fig. 1. Dataloop representation of Flash test type

based on the input type and new constructor, such as coalescing of adjacent
regions in indexed types.

Figure 1 shows the dataloop representation of the type used in the Flash I/O
datatype test described in Section 3. Converting from the nested MPI vectors
in the Flash type results in a similarly nested set of vector dataloops. At the
bottom of the diagram is the leaf dataloop; in this case it is a vector with a
count of 8, a stride of 192 bytes, and an element size and extent of 8 bytes (a
double). Dataloops above the leaf describe where data resides in the buffer, but
do not require processing of the buffer. Thus processing consists of two steps,
recalculating the relative location of data based on upper (non-leaf) dataloops,
and processing data at the leaf. In a heterogeneous system there would be two
slight differences: type information would be stored in the dataloops rather than
simple byte sizes, and struct dataloops might allow for “forks” in the tree that
result in multiple leaf dataloops. The overall process would remain the same.

2.2 Partial Processing: Segments

In many cases processing of a type must be broken into a number of steps. For
example, when sending a message we may need to copy data into a contiguous
buffer for sending. If the message is large, we may have to break the data into
chunks in order to limit our use of available memory. We call this action of
operating on data in chunks partial processing. This action is often necessary in
other areas as well, such as I/O, where buffer sizes or underlying interfaces may
be limiting factors.

For the purpose of partial processing, we need some structure to maintain
state between calls to datatype processing routines. We call this structure a
segment. Segments are allocated before processing and freed afterwards. Seg-
ments contain the stack used to process the type and state describing the last
position processed. With this information, processing can be broken into multiple
steps or performed out of order.
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2.3 Actions on Data

So far we haven’t discussed actions that might be performed as we are processing
a type, other than alluding to copying data to and from contiguous buffers.
However, there are actually a variety of actions that one might perform.

For MPICH2 the use of type processing occurs in three locations. The first
and most obvious is the MPI Pack and MPI Unpack routines that allow users to
pack a type into a contiguous buffer. The second use is in the point-to-point
messaging code itself. In this code we must in some cases pack or unpack from
contiguous buffers of limited size in order to bound the memory requirements
of the implementation, so partial processing is needed. In other cases we can
leverage the readv and writev calls to avoid the need for data copy. In these
cases we instead convert the type to a list of (offset, length) pairs to be passed
to these calls. Here, too, we must partial process, as these calls will accept only
a limited number of these pairs. The third use of type processing is in parallel
I/O. The MPI-IO component of MPICH2 requires similar (offset, length) pairs
for use with noncontiguous file views. The sizes of these types do not match
the sizes of the types for readv and writev calls on all platforms, so separate
routines are required.

Clearly, in the context of MPI alone a number of operations might be per-
formed. We thus separate the code that understands how to process the type
from the action that will be performed on pieces of the type. For a given action
to perform on types, we need functions (or possibly macros for performance rea-
sons) that understand each of the leaf dataloop types. By providing code that
can process entire leaf dataloops, we avoid processing the type as a collection of
contiguous pieces, thereby maintaining performance. Returning to the example
dataloops in Figure 1, a function for processing vector leaf dataloops will be used
to copy data during the MPI Pack operation. This function will then perform an
optimized strided copy, rather than copying an element at a time.

2.4 Implementation Details

Currently we implement our system using a core “loop manipulation” function
that processes non-leaf dataloops and calls action-specific functions to handle
leaf dataloops. For each action a set of functions are implemented that under-
stand contiguous, vector, indexed, block indexed, and struct loops. The ability
to process entire leaf dataloops in this manner leads directly to the performance
seen in the following section. We have investigated conversion of these routines
into macros in order to eliminate function call overhead, but at this time the
overhead does not appear significant. The current implementation supports only
homogeneous systems.

Optimizations of the loop representation are currently applied at two points.
First, when types are built, we perform optimizations such as conversion of struct
types into indexed types (for homogeneous systems) and coalescing of contiguous
indexed regions. Second, at the time the segment is created (the first step in a
MPI Pack), we examine the type and the count used in the segment. We use this
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opportunity to optimize for cases such as a count of a contiguous type, converting
this into a larger contiguous type or a vector (depending on the extent of the
base type). We will see the results of this optimization in the Struct Array and
Struct Vector tests in the following section.

In addition to loop optimization we are able to preload the entire stack at seg-
ment creation time. This preloading is possible because of conversion of structs
into indexed loops; our homogeneous type representation never has more than
one leaf dataloop. The preloading optimization may also be used in heteroge-
neous systems when struct types are not present in the datatype and may be
used to a limited extent even when struct types are present.

3 Benchmarking

When choosing benchmarks for this work, we first examined the SKaMPI bench-
mark and datatype testing performed with this tool [7, 8]. While this tool did
seem appropriate for testing of type processing within a single MPI implemen-
tation, it does so in the context of point to point message passing or collectives.
Because we wanted to look at a number of different implementations and were
concerned solely with type processing, we desired tests that isolated datatype
processing. We implemented a collection of synthetic tests for this purpose. These
tests compare the MPI Pack and MPI Unpack routines with hand-coded routines
that manually pack and unpack data, effectively isolating type processing from
other aspects of the MPI implementation. Each test begins by allocating mem-
ory, initializing the data region, and creating a MPI type describing the region.
Next, a set of iterations are performed using MPI Pack and MPI Unpack in order
to get a rough estimate of the time of runs. Using this data, we then calculate
a number of iterations to time and execute those iterations. The process is re-
peated for our manual packing and unpacking routines. Only pack results are
presented here.

The Contig and Struct Array set of tests both test performance operating
on contiguous data. The Contig tests are simple contiguous cases using MPI INT,
MPI FLOAT, and MPI DOUBLE types. A contiguous type of 1048576 elements is cre-
ated, and a count of 1 is passed to the MPI Pack and MPI Unpack routines. We
expect in these tests that most MPI implementations will perform competitively
with the manual routines. The Struct Array test creates a single struct type,
and an array of 64K of these are manipulated. The structure consists of two
integers, followed by a 64-byte char array, two doubles, and a float. The struc-
ture is defined to be packed, so there are no gaps between elements or between
structures in the array. This provides an opportunity for implementations to
automatically optimize their internal representation of the type, and we would
expect performance to be virtually identical to the Contig test.

The Vector and Struct Vector tests both examine performance when oper-
ating on a vector of 1,048,576 basic types with a stride of 2 types (i.e. accessing
every other type). In the Vector tests, we build a vector type and pack and un-
pack using a count of 1. In the Struct Vector tests we first build a struct type
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using MPI LB and MPI UB to increase the extent, and then we pack and unpack
with a count of 1048576. This is a useful method of operating on strided data
when the number of elements might change from call to call. Examining the
relative performance of these two tests allows us to see the importance of opti-
mizations that are applied after the type is created based on the count passed
to MPI calls.

0 1 2 3 4 5 6 7 8 9

repeating pattern

Fig. 2. Pattern of elements in Indexed tests

The Indexed set of tests use an indexed type with a fixed, regular pattern.
Every block in the indexed type consists of a single element (of type MPI INT,
MPI FLOAT, or MPI DOUBLE, depending on the particular test run). There are
1,048,576 such blocks in the type. As shown in Figure 2, some pieces in the
pattern are adjacent, allowing for underlying optimization of the region repre-
sentation. A particularly clever implementation could refactor this as a vector
of an indexed base type, but we do not expect any current implementations to
do this, and ours does not. These tests showcase the importance of handling
indexed leaf dataloops efficiently.

t

Fig. 3. Data layout in 3D Face tests

The 3D Face tests pull entire faces off a 3D cube of elements (Figure 3,
described in Appendix E of [4]). Element types are varied between MPI INT,
MPI FLOAT, and MPI DOUBLE types. The 3D cube is 256 elements on a side. We
separate the manipulation of sides of the cube in order to observe the perfor-
mance impact of locality and contiguity. The XY side of the cube has the the
greatest locality, while the YZ side of the cube has the least locality.
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The Flash I/O test examines performance when operating on the data kept
in core by the Flash astrophysics application. The Flash code is an adaptive
mesh refinement application that solves fully compressible, reactive hydrody-
namic equations, developed mainly for the study of nuclear flashes on neutron
stars and white dwarfs [3].

t

Z−Axis

X−Axis

Y−Axis

Ghost Cell (skipped during checkpoint)
Data saved during checkpoint

Variables 0,1,2, ... 23

FLASH Block Structure Slice of FLASH Block

Fig. 4. Data layout in Flash test

Figure 4 depicts the in-memory representation of data used by Flash. The
data consists of 80 3D blocks of data. Each block consists of a 8 × 8 × 8 block
of elements surrounded by a guard cell region four elements deep on each side.
Each element consists of 24 variables, each an MPI DOUBLE. For postprocessing
reasons the Flash code writes data out by variable, while variables are interleaved
in memory during computation. In the Flash I/O test we describe the data in
terms of this by-variable organization used in writing checkpoints. This leads to
a very noncontiguous access pattern across memory. Further, this is the most
deeply nested type tested in this suite, showcasing the need for nonrecursive
approaches to processing.

3.1 Performance Results

Measurements on the IA32 platform were performed on a dual-processor 2.0 GHz
Xeon system with 1 GByte of main memory. The machine has 512 Kbytes of L2
cache. Results for the Stream benchmark [6] show a copy rate of 1230.77 Mbytes/sec
on this machine. This gives us an upper bound for main memory manipulation,
although in specific cases we will see cache effects.

Table 1 shows the performance of our synthetic benchmarks for manual pack-
ing, MPICH2, MPICH1, and the LAM MPI implementations. Also listed are
the size and extent of the data region manipulated (in MBytes). Results with
MPI INT types were removed; they were virtually identical to MPI FLOAT results.
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Table 1. Comparison of processing performance

Manual MPICH2 MPICH1 LAM Size Extent

Test (Mbytes/sec) (MB) (MB)
Contig (FLOAT) 1156.37 1124.04 1136.48 1002.38 4.00 4.00

Contig (DOUBLE) 1132.26 1126.22 1125.05 1010.81 8.00 8.00
Struct Array 1055.02 1131.39 1131.28 512.72 5.75 5.75

Vector (FLOAT) 754.37 753.81 744.42 491.31 4.00 8.00
Vector (DOUBLE) 747.98 743.88 744.81 632.77 8.00 16.00

Struct Vector (FLOAT) 746.04 750.76 36.57 141.60 4.00 8.00
Struct Vector (DOUBLE) 747.31 743.70 72.81 252.34 8.00 16.00

Indexed (FLOAT) 654.35 401.26 82.79 122.85 2.00 4.00
Indexed (DOUBLE) 696.59 530.29 161.52 204.43 4.00 8.00

3D, XY Face (FLOAT) 1807.91 1798.52 1754.45 1139.04 0.25 0.25
3D, XZ Face (FLOAT) 1244.52 1237.68 1210.53 992.80 0.25 63.75
3D, YZ Face (FLOAT) 111.85 112.06 112.15 64.22 0.25 63.99

3D, XY Face (DOUBLE) 1149.84 1133.86 1132.43 1011.11 0.50 0.50
3D, XZ Face (DOUBLE) 1213.10 1201.54 1157.93 969.46 0.50 127.50
3D, YZ Face (DOUBLE) 206.41 206.39 201.82 103.24 0.50 127.99

Flash I/O (DOUBLE) 245.60 212.55 215.80 159.63 7.50 59.60

LAM 6.5.9, MPICH 1.2.5-1a, and a CVS version of MPICH2 (as of May 7,
2003) were used in the testing. The CFLAGS used to compile test programs and
MPI implementations were “-O6 -DNDEBUG -fomit-frame-pointer -ffast-math
-fexpensive-optimizations.”

The data extent in the Contig test is large enough that caching isn’t a factor,
and in all cases performance is very close to the peak identified by the Stream
benchmark. The Struct Array test shows similar results for all but LAM. LAM
does not detect that this is really a large contiguous region, resulting in significant
performance degradation.

The Vector and Struct Vector tests show that the same pattern can be pro-
cessed very differently depending on how it is described. Our implementation
detects the vector pattern in the Struct Vector tests at segment creation time,
converting the loop into a vector and processing in the same way. This op-
timization is not applied in the other two implementations, leading to poor
performance.

The Indexed tests showcase the importance of handling indexed leaf data-
loops well. With the inclusion of action-specific functions that handle indexed
dataloops we attain 60% of the manual processing rate at the smaller data type
sizes and 76% for MPI DOUBLE, while the other implementations lag behind sig-
nificantly. We intend to spend additional time examining the code path for this
case, as we would expect to more closely match manual packing performance.

The 3D Face test using MPI FLOAT types shows two interesting effects. First,
because in the XY case the extent of the data is such that it all fits in cache,
performance actually exceeds the Stream benchmark performance for this case.
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In the YZ case data elements are strided but laid out in groups of 256; this is
more than adequate to maintain high performance. In the last (YZ) case we see
the effect of very strided data; we are accessing only one type for every 256 in a
row, and performance is less than 10% of peak for manual routines and all the
tested MPI implementations.

The Flash I/O type processing test shows that while we are able to maintain
the performance of a manual packing implementation, performance overall is
quite bad. Just as with the YZ 3D Face test, this type, with its many nested
loops, provides opportunities for optimization that we do not currently exploit.
This type will serve as a test case for application of additional optimizations.

4 Related Work

The work by Träff et al. on datatypes is in many ways similar to this ap-
proach [10]. They also consider derived types as a tree. However, their leaf nodes
are always basic (primitive) types, and they allow branches to occur at indexed
types, while we maintain a single child in these cases. Further they have rules
for each type of MPI constructor, rather than converting to a more general, yet
simpler, set of component types. At the same time, they leverage some loop
reordering optimizations that are not used in this work.

5 Conclusions and Future Work

This work presents a concise abstraction for representing types coupled with a
well-engineered algorithm for processing this representation. With this system we
are able to maintain a high percentage of manual processing performance under
a wide variety of situations. This system is integrated into MPICH2, ensuring
that many scientists will have the opportunity to leverage this work.

The study presented here was performed on commodity components and a
homogeneous system. It would be interesting to examine the performance on
vector-type machines. Other fast datatype approaches have been applied on
these machines [10], we should compare this work and look for ways in which
multiple techniques might be used to move beyond matching manual processing
performance. Techniques such as loop reordering and optimizing based on mem-
ory access characteristics [1] offer opportunities for improved performance and
should match well to the dataloop representation used in our system. However,
loop reordering has implications on partial processing that must be taken into
account. If we think of dataloops as a representation of a program for processing
types, runtime code generation is another avenue for performance gains. Support
for heterogeneous platforms is also important. While many of the optimizations
shown here are equally applicable in heterogeneous systems, further study is
warranted, including examining previous work in the area.

We are also looking at other applications of this component in scientific com-
puting software. For example, we are incorporating this work into PVFS [2] as a
type processing component. By passing serialized dataloops as I/O descriptions,
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we obtain a concise I/O request and can leverage this high-performance type
processing code for processing at the server. Similarly, this component could be
used to replace the datatype processing system in MPICH1, or the system in
HDF5 that was the source of performance problems in a previous study [9].
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